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SUMMARY

Medical image analysis aims at developing techniques to extract information

from medical images. Among its many sub-fields, image registration and segmentation

are two important topics. In this report, we present four pieces of work, addressing

different problems as well as coupling them into a unified framework of shape based

image segmentation. Specifically:

1. We link the image registration with the point set registration, and propose a

globally optimal diffeomorphic registration technique for point set registration.

2. We propose an image segmentation technique which incorporates the robust

statistics of the image and the multiple contour evolution. Therefore, the

method is able to simultaneously extract multiple targets from the image.

3. By combining the image registration, statistical learning, and image segmen-

tation, we perform a shape based method which not only utilizes the image

information but also the shape knowledge.

4. A multi-scale shape representation based on the wavelet transformation is pro-

posed. In particular, the shape is represented by wavelet coefficients in a hi-

erarchical way in order to decompose the shape variance in multiple scales.

Furthermore, the statistical shape learning and shape based segmentation is

performed under such multi-scale shape representation framework.

xii
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CHAPTER I

JUSTIFICATION OF THE RESEARCH TOPIC

Medical image analysis is a very active research area in the recent decades. In par-

ticular, the image segmentation and registration are topics drawn lots of attentions.

In deed, one of the main objective of medical image segmentation is to assist the

doctors in identifying objects of interest in the multi-modality medical imagery. On

the other hand, registration solves the problem of aligning the common target in two

or more images into one common coordinate system. The two seemingly distinct

areas are in fact closely related. In fact, if we register an anatomy atlas to a new

image, equivalently we provide a segmentation of the organ/tissues of the new image.

Likewise, when the target in two or more images are segmented out, registering them

then becomes a much easier problem. Hence, the strategy we take in this proposal

is as follows: we first study the two topics separately and then combine the two in a

coupled framework.

More explicitly, the point set registration method is discussed in Chapter 2. Then,

we turn to address the image segmentation algorithm in Chapter 3. Furthermore, the

registration and segmentation is coupled in a shape based segmentation framework

in Chapter 4. Finally, the shape is represented in a multi-scale way using wavelet

transformation in Chapter 5, and the statistical shape learning and shape based

segmentation are further carried out in such multi-scale framework.

More explicitly, the first chapters addresses the point set registration problem.

We study the point set registration and propose a global optimal diffeomorphic reg-

istration scheme for point sets. The global optimality is achieved by considering

the registration as a state estimation problem and solved under the particle filtering

1
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framework. Then in Chapter3, the topic turns to image segmentation. Specifically,

we develop a method to perform multi-target segmentation. The semi-automatic al-

gorithm is initiated by user provided multi-labeled map, which gives several “seeds”

in each expected objects. Then, the characteristics of the targets are learned from the

corresponding seeds, which is further used to drive the multiple active contours evolve

to the desired boundary positions. Moreover, the interactions among the contours

are incorporated to guarantee the mutual-exclusive of them. This scheme effectively

reduces the contour leakage in low contrast region. Nevertheless, due to the fact that

this method only utilizes the low-level image information (in contrast to high level

shape prior), in some cases the results are not sufficiently satisfying.

Hence, Chapter 4 unifies the image registration and segmentation in a coupled

framework. That is, the shape of the target object is incorporated in the segmentation

process. To this end, the algorithm first learns the shapes prior from a set of training

shapes and performs the shape-based segmentation thereafter. Before performing

statistical learning of the shape, registration is necessary to remove the pose variance,

such that all the variances captured by the subsequent statistical learning is due to

shape variances. To perform the registration, techniques proposed in Chapters 2

are used. Then, the training shape space is constructed by the principle component

analysis and further shape based segmentation is carried out in this space to utilize

both image information as well as the prior shape knowledge.

Unfortunately, the shape representation above suffers from the problem that the

small/local scale shape variances are sometimes overwhelmed by the large/global

scale shape variances, due to the fact that the former ones usually have larger energy.

However, in many cases the small “bump” on a smooth surface is an important

indicator of pathology. To address this issue, in Chapter 5 we propose a multi-

scale shape representation, using the wavelet transformation. Therefore, the shape

is represented and further learned in multiple scales. Based on that, the multi-scale

2
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shape based segmentation is utilized in the extraction of hippocampus from the MR

images.

Before providing the detail of the methods, we review some of the key results in

the related areas.

1.1 Literature review for image registration

The basic objective of image registration can be roughly described as to find a suit-

able transformation, applying on one of the images, to make it similar to the other.

Different researchers, in various application scenarios, take different ways to address

the above phrases of “suitable transformation” and “similar”. To measure the sim-

ilarity between two images, some researchers choose to detect the features in the

image first, and then measure the similarity of the two images by the alignment of

the two sets of the detected features [17, 64, 62, 51]. Since the features capture the

important information in the images thus alignment of them is a sensible answer

to the alignment of the two images. Besides, the feature based methods have the

advantages that features are sparse representation of the image and thus the compu-

tational complexity is not heavy. Moreover, the user interaction can be incorporated

through providing the features such as by clicking on the corresponding points in

two images. However, it relies heavily on the detection of the features: manually

assigning features are time consuming while automatic feature detection is in fact

an image segmentation problem where the general solution is not well established.

Hence instead of explicitly extracting features before registration, some researchers

directly measure the difference between the two images. A straight forward way is

to use the Lp norm, or the cross-correlation of the two images [58, 49]. Such model

has the limitation that it assumes the two images be of the same modality. To loosen

this assumption, authors in [65, 61, 36] used mutual information and authors in [20]

used the gradient of the intensity. However, this category of similarity measurements

3



www.manaraa.com

require the main objects to be registered in the two images to be largely overlapped.

Moreover, in the cases where one image contains only a portion of the other (partial

structure registration), the minimum of the similarity functional does not reflect the

visually suitable alignment.

After the similarity measurement is chosen, various transformation models are

employed to maximize it. The transformation model is largely dependent on the un-

derlying application. Rigid transformation, though simple, is a suitable choice for

intra-subject registration [36, 23]. Similarity [26] and affine transformations are usu-

ally considered to be on the “boundary” of human perception about the concept of

shape: two objects differing by a similarity or an affine transform may be thought

of as having the same shape, while transformations with more degree-of-freedom

(DOF) is considered to be of another shape [43, 14]. Registration under transforma-

tions with more DOF than affine include those parametrized by B-Spline [52], Thin

Plate Spline [4] or NURBS [63]. Furthermore, in [57, 22], the transformation is not

parametrized but treated as a vector field whose values are defined pointwisely.

Various optimization schemes are employed to optimize the cost function defined

by the similarity measurement over the transformation. Usually the gradient based

local optimization schemes are used for transformation model with a few parameters

such as rigid, affine or splines cases. The iterative methods are often used for cases

where the transformation/deformation is pointwisely defined [57, 22].

It is important to note that almost all of the above schemes only handle the

local registration task. Indeed, the global image registration problem is only briefly

addressed in [26, 1]. On the other hand, this notion of “global” registration is usually

performed using a point set framework. So we plan to address the image registration

problem by utilizing the techniques in the point set registration field. To this end,

we first review the literature in the point set registration fields.

4
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1.2 Literature review for point set registration

Similar to image registration, point set registration addresses the problem of finding

the best matching between two or more point sets. In contrast to image registration,

however, point-set registration usually requires an extra step of explicitly finding the

correspondences between points in the two sets. Then the transformation parameters

can be estimated. This is the main theme of the well-known Iterative Closest Point

(ICP) algorithm introduced in [3]. However, the basic ICP approach is widely known

to have issues with local minima. To address this issue, Fitzgibbon [16] introduced

a robust variant by optimizing the cost functional via the Levenberg-Marquardt al-

gorithm. Moreover, Chui and Rangarajan employed an annealing scheme to broaden

the convergence range and reduce the influence of outlier [9]. However the tempera-

ture in the annealing scheme needs to be carefully chosen to balance the convergence

range and algorithm stability. In addition, point-set registration can be alternatively

be viewed as a parameter estimation task, whereby the transformation parameters

are considered to be random variables. To this end, the authors of [35, 40, 54] employ

filtering techniques to estimate the distribution of rigid transformation parameters.

1.3 Literature review for image segmentation

Image segmentation is usually recognized as a process of locating the region of in-

terested in an image. In situations that the contrast between the target and its

surrounding regions are high, simply applying thresholding will generate satisfying

result [49]. However such simple cases do not occur very much in reality. One common

practice consists of user initialization with one or several clicks (often called “seeds”)

in the target, and the algorithm then takes over to extract the desired object. A

simple but intuitive example using such strategy is the region growing method [56].

Although the formalism is simple and straightforward, it reflects the two key roles of

5
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the user initialization: Position: the positions of the initial seeds indicate the esti-

mated position of the target; Feature: the image information in a given neighborhood

of the seeds should be employed to learn the necessary characteristics of the desired

object as well as to drive the segmentation. Nevertheless, original region growing

only depends on the image intensity, and thus is many times not suitable for noisy

and textured imagery. Furthermore, the segmentation boundary is not guaranteed

to be as smooth as many times required. To address the first problem, Pichon et al.

used robust statistics for better modeling of the image features at the locations of

the seeds, and a fast marching algorithm to grow the segmentation contour [47]. In

order to utilize both image information and contour geometry, Kass et al. proposed

the active contour method to evolve a contour in a variational manner [28]. However,

the original active contour scheme is known to be not easy to be extended to higher

dimension as well as difficult to handle the topological change of the contour. To this

end, the level set method is utilized to implicitly represent the contour [42]. Under

the level set framework, a widely used strategy is to evolve the contour according

to the image gradient information [37, 30, 6, 69]. However, the image gradient in-

formation is prone to noise perturbation. Hence, authors in [70, 8, 39] utilize the

regional image information such as mean, variance, and probability density function

to characterize the target feature as well as to drive the contour evolution. Recently, a

local regional information driven contour evolution is proposed in [33], which is both

robust to image noise and unrelated image information remote from the contour.

Moreover, another desired feature for segmentation is the ability to simultaneously

extract multiple objects. This can be quite advantageous in medical image analysis,

where several related targets all need to be captured. However, most active contour

algorithms are tailored to handle only one target at a time. Thus, the given algorithm

needs to be executed sequentially several times in order to obtain the required multiple

objects. However, since the individual segmentation processes do not interact with

6
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each other, it is difficult to guarantee mutual exclusiveness among contours. To

address that, multiple object segmentation has been discussed in several papers [73,

5, 60, 19, 72, 55]. In these works, the algorithms require the contours to be mutually

exclusive (not overlapping). In addition, they also assume that the union of the

regions bounded by the contours must be equal to the entire image domain.

Nevertheless, the image information alone is often times not enough for algorithms

to find the desired boundary. To this end, we need to incorporate the prior knowledge

of the shape of the target. A well-known shape based segmentation method, active

shape model (ASM), is proposed in [10]. In that work, a set of training shapes

are learned before the segmentation process. In the training set, each shape, i.e.

2D contour, is represented by a parametrized curve. For each point on the curve,

the corresponding points on other training shapes are known in advance, and their

positions are modeled by a Gaussian distribution. The authors apply the principle

component analysis to learn the shape variances. Furthermore, given a new image,

the contour is evolving constrained by the learned shape information. Moreover,

authors in [34, 59] uses the level set function to represent the contour and extend the

shape based method to 3D cases.

7



www.manaraa.com

CHAPTER II

GLOBAL OPTIMAL DIFFEOMORPHIC REGISTRATION

FOR POINT SETS

In this chapter, we present a hierarchical method to perform globally optimal dif-

feomorphic registration, To register the “moving point set” to the “fixed point set”.

Accordingly, we first approach the registration through a filtering scheme. Then the

point set is hierarchically decomposed, and the registration is performed in finer scales

to address the local deformations. Furthermore, the transformations at local levels

are then fused to form a smooth and invertible diffeomorphic transformation.

2.1 Preliminary

In order to achieve better performance in point set registration, we adopted the idea

by viewing the registration as a state estimation process. Hence, we first provide the

algorithm for state estimation: the particle filtering method.

2.1.1 Particle Filtering (PF)

Particle filtering is a sequential Monte Carlo method [53] that provides a sequential

estimate of the distribution of the state variable of a dynamical system. We denote

the state variable at time t as xt and the observation as yt. The objective then

is to estimate the distribution of xt based on all the observations made until time

t, y1,2,...,t(=: y1:t), namely p(xt|y1:t). With this goal, the process and observation

models are given as:

{

xt+1 = f(xt, ut) (1)

yt = g(xt, vt) (2)
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where f and g may be nonlinear functions while ut and vt are the process and ob-

servation noises, respectively. We assume ut and vt are independent and are both

independent in time. Further, we assume the distribution of the initial state p(x0) is

known.

The recursive estimation of p(xt|y1:t) consists of two steps, namely the prediction

and update steps. Assuming p(xt−1|y1:t−1) is available, the prediction step gives the

prior PDF of xt at time t as:

p(xt|y1:t−1) =

∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (3)

where

p(xt|xt−1) =

∫

δ(xt − f(xt−1, u))p(u)du. (4)

Here δ denotes the Dirac function.

At time t after the observation yt is available, it can then be used to update the

estimation to obtain the posterior PDF:

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
(5)

where

p(yt|y1:t−1) =

∫

δ(yt − h(xt, v))p(v)dv (6)

In cases where f and g are non-linear, the analytical result of p(xt|y1:t) is rarely

available. Therefore, one can expect a numerical approximation of the PDF. To this

end, particle filter employs the Bayesian recursion under the Monte Carlo framework.

Firstly, samples (particles) are obtained from the initial prior distribution p(x0)

and they are denoted as {x0(i) : i = 1, . . . , N}. Secondly, we assume the particles

{xt−1(i) : i = 1, . . . , N} approximating the density p(xt−1|y1:t−1) are available, then

the prior distribution of p(xt|y1:t−1) is computed. Specifically, the particles {x∗
t (i) :

i = 1, . . . , N} approximating the prior density p(xt|y1:t−1) are computed as x∗
t (i) =

f(xt−1(i), u(i)) where u(i) are realizations of the process noise. Thirdly, with the

9
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arrival of yt, the likelihood of each x∗
t is computed as:

qi =
p(yt|x∗

t (i))
∑N

j=1 p(yt|x∗
t (j))

(7)

for i = 1, . . . , N and q0 = 0. Lastly, the posterior particles {xt(i) : i = 1, . . . , N} are

obtained by sampling from {x∗
t (i) : i = 1, . . . , N} such that P (xt(j) = x∗

t (i)) = qi, ∀j.

This is achieved by generating N uniform distributed (on (0, 1]) random variables wi’s

and assigning xt(i) = x∗t (M) where M satisfies

M−1
∑

j=0

qj < wj ≤
M

∑

j=0

qj (8)

2.2 Proposed method

In this section, we first present a global optimal affine registration between two point

sets by viewing the registration as a state estimation process and solved by particle

filtering. In addition, the resulting moving point set is further decomposed if it does

not meet certain accuracy criteria, and registration is performed at finer scale to

correct the local deformation. Such decomposition-registration cycle continues until

satisfying result is achieved. Finally, under a Lie-group/Lie-algebra framework, a

diffeomorphic transformation is constructed as the final result.

2.2.1 Affine Registration using PF

Denote the fixed point set as P = {p1, . . . ,pM} and the moving point set, which

is to be registered to the fixed point set, as Q = {q1, . . . , qN}. It is noted that

qi,pi ∈ R
3 ×{1} are represented in homogeneous coordinates. To register Q to P, a

global optimal affine registration procedure is carried out. For this purpose, we define

the cost function:

C(B) :=
1

N

N
∑

i=1

‖Bqi − Cl(Bqi)‖ +
λ

det2(B(1 : 3, 1 : 3))
. (9)
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In equation (9), we have the transformation matrix

B =







A t

01×3 1






(10)

where A ∈ R
3×3, det(A) 6= 0 is the affine transformation matrix, and t ∈ R

3 is the

translation vector. In addition, Cl : R
3 → P maps a point in R

3 to its closest point

in P. Note that the second term in equation (9), with weighting λ > 0, penalizes

det(A) from getting too close to zero. Without this, the cost function may have

trivial minimizers.

Concerning numerical details, a KD-tree data structure may be utilized to achieve

a fast (O(logM)) search [29]. The minimization of the registration cost function E in

(9) is a 12 dimensional nonlinear unconstrained optimization problem. The gradient

of E with respect to the affine matrix A and translation t are computed. Then the

BFGS algorithm, one of the most popular quasi-Newton methods [41], is employed

to obtain a fast (super-linear) convergence.

Nevertheless, the above affine ICP is a local minimization process and is known

to be sensitive to initialization and local minima. To overcome such drawbacks and

achieve global optimality, we formulate the affine registration as a parameter estima-

tion task, and solve it using particle filters.

In affine registration, the state space S is 12 dimensional where the first 9 dimen-

sions are for the affine matrix and the last 3 dimensions are for translation. Denoting

the state vector as x ∈ S , the process model takes the form:

xt+1 = R(xt + u), (11)

where the operator R : S → S takes xt as the initial configuration, proceeds with a

few steps of the deterministic affine registration, and returns the resulting parameter

estimated as xt+1.

11
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The observation model is:

yt = E(xt) + v (12)

where the operator E : S → R
+ gives the cost function under the state xt. The

process and observation noise signals are denoted by u and v, respectively. It can

be seen from above that both the process and the observation models are highly

non-linear.

In addition to the process and observation models, the prior distribution p(x0)

is required. Usually, without a priori information of the solution, p(x0) is assumed

to be Gaussian or uniformly distributed. Altogether, the complete global optimal

affine ICP can be described in Algorithm 1. This algorithm will be referred to as

Algorithm 1 Affine Registration by Particle Filtering

1: Sample from p(x0) to get {x0(i) : i = 1, . . . , N}
2: for i = 1, 2, ..., t do
3: Obtain the prior samples {x∗

t (i)} by the process model.
4: Evaluate the likelihood qi’s using (7)
5: Resample to get posterior {xt(i)} using (8)
6: end for

affine-PF-ICP in the subsequent discussion.

2.2.2 Transformation decomposition

The global affine registration presented in the previous section yields an affine trans-

formation B̃ ∈ R
4×4. Although such affine registration is optimal in the global sense,

and is capable of handling the cases where two point sets differ by even an 180◦ rota-

tion (around one or more axes), it is not able to provide satisfying results where the

local deformations exist. To measure the residual error at each point, define

ei := pj − B̃qi = Cl(B̃qi) − B̃qi (13)
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to be the error vector at each registered point, where qj is the closest point in P to

B̃qi. Accordingly, we define the average error magnitude:

E :=
1

N

N
∑

i=1

‖ei‖2, (14)

which is consistent with the cost function in equation (9) but without the penalty

term.

Such a quantity is used to determine if the registration requirement is satisfied. If

not, the moving point set is decomposed in a way described below. To proceed, each

point in the registered moving point set is augmented using its error vector defined

above to form a 8-dimensional feature vector:

f i := [ηqi; (1 − η)ei] ∈ R
8 (15)

It is noted that since the 4-th component of qi and ei are respectively 1 and 0, f i

is effectively in R
6. Consequently, the feature vector combines the original space

information of the point set as well as the registration error. In practice, η is chosen

such that ηqi and (1− η)ei are of the same magnitude. In addition, a (dis-)similarity

matrix W ∈ R
N×N is defined as W (i, j) := exp(−‖f i − f j‖2).

It is noted that the construction of the matrix W does not take O(N2) temporally

or spatially. In fact, in the feature space a KD-tree is constructed. Consequently, for

each feature vector, only its neighbors in a certain range are selected to construct the

W matrix in order to make it sparse. To decompose the point set into two groups

such that the “cross-group similarity” is minimized, the normalized cut algorithm [55]

is adopted. To this end, we further define the diagonal matrix D as Di,i =
∑

jW (i, j)

and an eigen-decomposition problem:

D− 1
2 (D −W )D− 1

2 x = λx (16)

is solved using the Lanczos algorithm [18]. Since the left-hand-side matrix in equa-

tion (16) is symmetric positive definite, all the eigen values are positive real num-

bers. Among them, the eigenvector corresponding to the second smallest eigenvalue

13



www.manaraa.com

is picked. A standard k-means clustering or simply thresholding will decompose Q

into two subsets, denoted as U1 and U2.

With the point set decomposed, U1 and U2 are registered separately to P. In

particular, we note that the cost function in equation (9) is non-symmetric between

P and Q: it only traverses the moving point set. This design naturally provides the

capability of registering a partial structure to an entire one, which is the property

we expect when registering U1 and U2 to P. Subsequently, their registration results

are evaluated to determine if further decomposition of U1 and/or U2 is necessary.

This process goes on and finally, the decomposition-registration cycle stops when

the criteria is met in all the point subsets. As shown in Theorem 1, convergence is

guaranteed.

Theorem 1 (Convergence). Given any positive error criteria ǫ > 0, the above hi-

erarchical scheme will find the decomposition {Ui} of Q and the corresponding trans-

formations {Ti} such that

1

|Q|
∑

i

∑

q∈Ui

‖Cl(Tiq) − Tiq‖2 < ǫ (17)

It is noted that the above theorem states the ideal case. In practice, however,

the existence of the second term in equation (9) will make the theorem work ap-

proximately. Finally, The procedure in this section can be summarized as follows:

It may be argued that the nonlinearity such hierarchical decomposition can achieve

may be not as accurate as those methods using splines, NURBS, or even point-

wise deformation fields. However, at least theoretically the decomposition can be

performed to point-wise accuracy. Moreover, we observe that in many situations, the

data set can be grouped into a few components, where an single affine transformation

is descriptive enough for each group, i.e., point-wise accuracy is not always necessary.

For instance, in the example shown in Section 2.3.2, an affine transformation is enough

14



www.manaraa.com

Algorithm 2 Registration & Decomposition(P, Q)

Require: Fixed Point set P, moving point set Q

1: Register Q to P as in Algorithm 1
2: if Error is above criteria then
3: Decompose Q into U1 ∪ U2

4: for i = {1, 2} do
5: Registration & Decomposition(P, Ui)
6: end for
7: else
8: return point subsets of Q and their registration parameters.
9: end if

for each section of finger between two joints. Therefore, the proposed method provides

a nice balance between nonlinearity and global optimality.

2.2.3 Fusion of affine transformations

In the previous section, the moving point set is decomposed and registered separately

to the fixed point set. Although doing so more accurately addresses the local defor-

mation and reduces the registration error at different scale, it generates more than

two affine transformations, each of which applying to certain portion of the moving

point set. On the other hand, in the final result, what one expects is a coherent

transformation applied on the whole moving point set. Hence we need to “stitch” the

pieces together.

More generally, any transformation is locally approximated to the first order by an

affine transformation. However, in practice it is not only computationally intensive

to calculate the local transformation at each point, but also not necessary because

in many cases nearby points undergo similar affine transformation. Therefore, the

domain can be decomposed into a few components, each of which is transformed by

an affine transformation, and the transformation of the whole domain is the combi-

nation of them. However, doing so poses the problem of how to construct the global

transformation from each of those components.

More rigorously, in the 3D Euclidean space R
3, there are N affine transformations
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parametrized by: (Ai, Ti) with Ai ∈ R
3×3, i = 1, . . . , N and Ti ∈ R

3×1, i = 1, . . . , N .

In addition, each affine transformation corresponds to a weighting function ωi : R
3 →

[0, 1], i = 1, . . . , N , where high ωi(x) indicates the i-th transformation (Ai, Ti) plays

a dominant role in the region closed to x. To fuse (Ai, Ti)’s into a single (nonlinear)

transformation A while respecting their corresponding ωi’s, it was shown in [2] that a

linear combination in the Euclidean space given by F (x) :=
∑

i ωi(x)(Aix + Ti) will

develop singularities.

To address this issue, form the affine transformations a Lie group, and the “in-

finitesimal” transformations associated with them defines the corresponding Lie al-

gebra [2]. Consequently, instead of performing the above straightforward weighted

combination of the affine transformations in the Lie group, one seeks the alternative

in the Lie algebra, and then the weighted average is mapped back as the final trans-

formation. It is shown in [2] that such a transformation is a diffeomorphism. More

explicitly, we assume the hierarchical decomposition registration scheme results in a

list of point subsets: {Ui ⊂ Q : i = 1, . . . , K} of the moving point set Q, and their

corresponding affine transformations: {Bi ∈ R
4×4 : i = 1, . . . , K}. To fuse them, a

weighting function ωi : R
3 → [0, 1] is designed for each transformation Bi (and the

corresponding Ui) as:

ωi(x) = e−‖x−Cli(x)‖2

, (18)

where the function Cli : R → Ui returns the closest point in the point set Ui to a

given position in R
3. It can be seen that ωi indicates each transformation Bi’s spatial

extension: the weight of the transformation Bi is high around the point set Ui and

is low at where far from Ui. Referring to the above discussion, the transformation

matrix Bi is in the Lie group (whose direct weighted sum,
∑

i ωiBi, develops singular-

ities). Next, the infinitesimal motion Li in the Lie algebra is computed by the matrix

logarithm [2]. Then, the weighting function ω(·) is evaluated at x and the weighted
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average infinitesimal transformation in the Lie algebra is obtained as:

L(x) :=
∑

i

ωi(x)Li. (19)

Finally, the matrix exponential B(x) of L(x) is computed and the image of x is

B(x)·x. As shown in [2], the transformation B(x) : x ∈ R
3×{1} is a diffeomorphism.

2.3 Experiments

In this section, we provide various qualitative and quantitative examples to show the

performance and robustness of the proposed method.

2.3.1 Affine ICP using particle filtering

To demonstrate the particle filtering affine ICP in Section 2.2.1 successfully overcomes

the local minima problem and achieves global optimality, we use an example where

the ground truth is known a priori. In Figure 1, the blue point set is transformed to

another affine pose as shown by the red one, and the objective is to register the red

point set to the blue one.

Figure 1: One point set in two different affine poses

For this purpose, minimizing the affine-ICP cost function defined in equation (9)

gives the result shown in Figure 2. The blue points are again from the fixed point

set while the red ones are from the registered moving point set. Due to the local
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minima, the poses of the two point sets are not well registered. On the other hand,

Figure 2: Registration using affine ICP

the affine-PF-ICP correctly restores the original pose as shown in Figure 3.

Figure 3: Registration using Particle Filtering

To further analyze the performance of the affine-PF-ICP quantitatively, the follow-

ing experiments were conducted: The blue point set in Figure 1 is again fixed, and is

also employed as the moving point set, i.e., it is to be registered to itself. The starting

affine parameters (12 dimensional) are randomly chosen. Hence, the ground truth of

a good registration is that the final affine matrix converges to the identity matrix, and

that the translation vector converges to a zero vector. Written in a 12-dimensional

parameter vector, this ground truth parameter is (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0). To ini-

tialize the registration, a random initial affine matrix is constructed by adding to

the identity matrix a random matrix, each of whose elements is normally distributed
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around 0 with standard deviation of σA ∈ {0.05i; i = 1, . . . , 6} with i being the trial

index. Similarly, the initial translation is a 3D normal random vector centered at 0

with standard deviation σT ∈ {0.25i× range; i = 1, . . . , 6}, where the “range” is the

range of the fixed point set. In the statistical analysis, 40 sets of initial parameters

are generated for each trial. The l2 distance between the initial parameters and the

ground truth parameter, as well as the l2 distances between the final parameters and

the ground truth parameter are recorded. These are shown in Figure 4 in semi-log

plot for the vertical axis.

Figure 4: Error comparison in semi-log-y plot. Top curve: l2 distances from the
starting parameters to the ground truth. Second curve: l2 distance from the final
parameters of the affine-ICP to the ground truth. Third curve: l2 distance from the
final parameters of the rigid-PF-ICP registration, as proposed in [54], to the ground
truth. Bottom curve: l2 distance from the final parameters of the proposed affine-
PF-ICP to the ground truth.

2.3.2 A walk-through example

After illustrating the (linear) affine-PF-ICP, we use this example to demonstrate the

whole process of the (nonlinear) hierarchical diffeomorphic registration algorithm.

Figure 5 shows two sets of points. (For better appreciation of their relative positions,

we also show the surface. However, only the points are used in the algorithm.) The

fixed point set is colored in cyan and it is extracted from the public available data

19



www.manaraa.com

set #72 on shapes.aimatshape.net.1 The moving point set, in yellow, is number

#7592. Both point sets are the index and middle fingers from different left hands.

It can also be observed that apart from the affine pose difference between the two

point sets, there are local deformations, e.g., the fingers of #72 are bent, while those

of #759 are straighter.

(a) (b) (c)

Figure 5: Two finger point sets in their original poses.

The result of applying the affine-PF-ICP is shown in Figure 6 where the fixed point

set is in cyan and the registered moving point set is in yellow. It can be observed

(a) (b) (c)

Figure 6: Finger point set after affine-PF-ICP registration

that a single affine transformation, though being globally optimal, is not enough to

1http://shapes.aimatshape.net/view.php?id=72
2http://shapes.aimatshape.net/viewgroup.php?id=759
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align the two point sets. In fact, visual inspection reveals that the angles between the

two fingers in the two point sets are different, as well as there are finer deformations.

Applying the decomposition scheme in Section 2.2.2, the registered moving point set

is separated into two, as shown in Figure 7.

Figure 7: Decompose the moving point set into two.

Each point subset is then registered to the fixed point set separately. Due to

the asymmetry in the registration cost function defined in equation (9), registering

a partial structure to the whole structure is naturally handled. Indeed, comparing

Figure 8(a) to Figure 6, we see the angular difference problem is resolved. However,

not surprisingly it also results in tearing, which is highlighted in Figure 8(b) and 8(c).

The moving point set is further decomposed hierarchically. After registration

at a finer scale, the computed transformations are fused into a single diffeomorphic

registration, shown in Figure 9.

As can be observed in enclosed region highlighted by the green circle of Figure 9(d)

and 9(e), the multiple transformations are nicely “stitched” together at the regions

highlighted by the green ellipse, and the sub-point sets are nicely registered to the
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(a) (b) (c)

Figure 8: Register the two sub-sets to the fixed point set separately. Comparing
subplot 8(a) and 8(b) with Figure 6(a) and Figure 6(c) will see the angle difference
being solved. However, subplot 8(c) highlights the tearing in region enclosed by the
circle brought about by registering separately.

fixed point set (Figure 9(a)9(b)9(c)). Interestingly, in this example the decomposi-

tion is consistent with the anatomical structure of the fingers. However, in general

the purpose of decomposition is for finer scale registration and does not necessarily

correspond to anatomical decomposition.

Quantitatively, we plot the reduction of the registration error in Figure 10. The

vertical axis is the error defined in equation (14) (The fixed point set has the range

in: [−0.26, 0.13] × [0.26, 0.85] × [−0.24, 0.31].) In the figure the dashed line with

the downward triangle marker plots the log of error of just affine-PF-ICP without

decomposition. It can be seen that the error stops decreasing after a certain number

of iterations. However, with the decomposition, the error could be further reduced by

registration at finer level, shown as the “square” line. After the second decomposition,

the error further drops, as indicated by the “upper-triangle” line, and the “star” line

after the third decomposition. Furthermore, it is noted that when there are several

components, the largest error is plotted. Although the current result after three

decomposition is satisfying, further decomposition can be carried on if desired.
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2.3.3 Tract registration

In this set of experiments we further test the algorithm on larger and more complex

point sets. Here each point set represents the neuro-tracts of the human white matter.

Different functional regions in the cerebral cortex (gray matter) are connected by

those tracts. Moreover, clinical correlations have been found between the shape of

the tracts and certain brain diseases such as schizophrenia [32]. Hence, under the

scenario of statistical analysis of fiber tracts of different subjects, it is crucial to

register them into a common coordinate system. Furthermore, the tracts can be

categorized into different groups, each of which contains tracts connecting similar

functional regions of the gray matter. However, on the one hand it is very time

consuming for a neuroscientist to hand group the tracts, and on the other hand the

fully automatic tract classification is a challenging problem in its own right. Thus, in

this experiment one set of fiber tracts has been grouped into several groups manually

and is used as the registration template, to which all the others are registered to and

clustered accordingly.

Figure 11 shows the original pose and position of the clustered template fiber

tracts (point set), and one moving point set (un-clustered). It can be seen that in

addition to the size, the two point sets are flipped, which makes the previous local-

optimization based algorithms not well-suited to the registration task at hand.

Figures 12(a), 12(c), and 12(e) show the results of registering the moving point

set to the template, using the affine-PF-ICP method. Since this figure only shows

the performance of the registration, for clarity of display, the template point set

is plotted in cyan. The registered moving point set is in yellow. In can be seen

that although the affine transformation is global optimal, the fine part (noted in the

box) is not well captured. Utilizing the fact that the template point set has been

clustered into several anatomically significant groups, we are able to further refine

the registration by decomposing the moving point set. In fact, the above global
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optimal affine registration, though being not accurate at the fine scale, does provide

a reasonable initial result. Based on that, the moving point set is clustered into

groups using the closest point criterion. That is, for each point in the affine-PF-

ICP registered moving point set, its class is decided by that of the closest point

in the template point set. Therefore, each moving point subset is registered to its

corresponding template sub-point set by the method described in Section 2.2.1.

In this test, the template point set has 908894 points and has been clustered into

10 tract bundles, each of which is registered to its corresponding bundle in the fixed

point set. Based on the new registration result, the moving point set is re-grouped to

achieve a better result. The grouping/registration cycles are iterated and finally, the

10 paired point subset registration results are fused to form a global diffeomorphic

transformation, which is shown in Figures 12(b), 12(d), and 12(f). In particular, note

that those regions not having been well registered previously are handled quite nicely.

Furthermore, in this experiment the fixed point set has been clustered. Thus the

registration scheme simultaneously provides a clustering for the moving point set.

Using different colors for different clusters, they are shown in Figure 13.

The method is further tested on more tracts data sets. Each point set has a similar

initial position and pose configuration as detailed above. In each of the Figures 14,

15, and 16, the registration results are overlapped onto the same fixed point set on

the right side and the clustering outcomes of the moving data sets are shown on the

right. Moreover, we perform the quantitative analysis on the fiber tracts data sets

using the proposed method, affine-PF-ICP, and the method in [54]. For each final

result, the error (computed using equation (14)) is plotted in Figure 17. The fixed

point set has the range: [−70.3, 66.7] × [−87, 91.8] × [−66.673].
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(a) (b) (c)

(d) (e)

Figure 9: Polyaffine registration result. Different colors in subplots 9(a), 9(b) and 9(c)
indicate different groups formed by the hierarchical decomposition. Compare them
with Figure 8(a) and 8(b) to find the local deformations get well registered. Also
compare subplot 9(d) and 9(e), highlighted in the circle, with Figure 8(c) to see the
“smooth stitching”.
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Figure 10: Error reduction through the hierarchical decomposition-registration.
Dash line indicates error without decomposition (single affine-PF-ICP) so it satu-
rated after certain number of iterations. With decomposition, indicated by little
arrow, the error is reduced.

(a) Anterior view (b) Superior view (c) Right view

Figure 11: Clustered template point set (colored) and un-clustered moving point
set (yellow), in their original pose and position.
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(a) (b) (c)

(d) (e) (f)

Figure 12: In all sub-plots, the template point set is in cyan. Left column: affine-PF-
ICP registered moving point set (orange). See the mis-matching in the box. Right
column: hierarchical decomposition-registration result (yellow). Moving point set has
1528792 points. Running time 30min.

(a) (b) (c)

(d) (e) (f)

Figure 13: Left column: colors indicate clusters in template point set. Right column:
moving point set got clustered while registered.
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(a) (b) (c)

(d) (e) (f)

Figure 14: Left column: the registration result. The fixed point set is in cyan and
the registered moving point set is in yellow color. Right column: registering and
clustering results for the second moving point set. Moving point set has 1176057
points.

(a) (b) (c)

(d) (e) (f)

Figure 15: Left column: the registration result. The fixed point set is in cyan and the
registered moving point set is in yellow color. Right column: registering and clustering
results for the third moving point set. Moving point set has 1376690 points.
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(a) (b) (c)

(d) (e) (f)

Figure 16: Left column: the registration result. The fixed point set is in cyan and
the registered moving point set is in yellow color. Right column: registering and
clustering results for the fourth moving point set. Moving point set has 1614770
points.

Figure 17: Comparing the final error on the four tracts data using different methods.
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CHAPTER III

MULTI-OBJECT SEGMENTATION USING LOCAL

ROBUST STATISTICS AND CONTOUR INTERACTION

With the final objective of combining registration and segmentation in a coupled

framework of shape-based segmentation method, in this chapter, we turn to the topic

of segmentation. In particular, we propose a semi-automatic image segmentation

method to extract multiple object from a given image. To this end, the algorithm

starts with user providing several “seeds” in different target objects. Then, the image

features are extracted and learned according to those features around the seeds. Such

learned information drives the segmentation contour evolution and the multiple con-

tours interact with each other to guarantee the mutual exclusive condition. Finally,

the contours converge to equilibrium position and provide the results. In Section 3.1,

we present the details of the overall method, including target characteristics adaptive

learning, individual contour evolution, and contour interaction. Next, we show some

experiments and tests performed on CT and MR data in Section 3.2.

3.1 Proposed Method

If we consider the segmentation process in our own visual system, we observe that

when human is recognizing the objects in a scene, several basic steps take place in

sequence [44]. We will illustrate this via an example. Suppose that we want to

trace out the boundary of both the liver and the right kidney in medical imagery.

First, prior anatomy knowledge drives our attention to the right abdominal region.

Second, we focus at an area where we believe to be most “liver-like,” and learn the

liver characteristics in this particular image. With such knowledge, we then move

30



www.manaraa.com

our focus to enclose more tissue that looks similar to those representative regions.

Usually, such similarity ends when we reach a remote area. In particular, at the

boundary where the liver touches the right kidney, the decision is difficult. Under

such a situation, we apply a similar procedure to the kidney, and we come back to

the same ambiguous region. However, this time with the information from both sides

(liver and kidney), internally we perform a competition: we compare the current voxel

with both the liver and the kidney to decide which boundary should advance, so the

other should retreat. Finally, the boundaries of liver and kidney are placed at the

balanced locations of the competition.

The segmentation scheme presented in this paper is a mathematical model for the

above process. It is a semi-automatic method because the first step above is achieved

by the user providing a label map indicating different targets by different labels. Each

subsequent step is handled by an automatic algorithm and is detailed in what follows

below.

3.1.1 Online feature learning

Denote the image to be segmented as I : Ω → R where Ω ⊂ R
d is an open set and

d ∈ {2, 3}. Likewise, the user provided label map is denoted as L : Ω → N∪{0} where

0 indicates background and non-zero positive integers indicate the target object labels.

For ease of discussion, in this paper, we assume the distinct labels to be consecutively

ranging from 0 to N , an arbitrary positive integer. Moreover, the labeled region can

be defined by several “clicks”, and does not have to be close to the desired boundary.

Next, voxels with the non-zero labels are categorized into different “seed groups” as

Gi = {x ∈ Ω : L(x) = i}.

In order to fully utilize the information given by the label map, we note that the

seed group not only indicates the location of the target, but also provides some sample

voxels contained in it. Hence, instead of making general assumptions on the target
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characteristics such as brighter/darker than surrounding area, we can learn them in

an online fashion. Often times, the image intensity alone is not descriptive enough.

Hence, a feature vector is extracted at each voxel, forming a feature image f : Ω →

R
Df . Subsequently, the segmentation is performed in the feature space. There are

many choices for the feature vector such as wavelet coefficients, Fourier descriptors,

Hessian matrix, etc. In this paper, we choose local robust statistics [24, 47] because

they are not sensitive to image noise, and may be computed quickly.

To this end, for each voxel x in the image, we define the feature vector f(x) ∈ R
Df

by combining several robust statistics derived in a neighborhood B(x) ⊂ Ω around x.

More explicitly, we denoteMED(x) as the intensity median withinB(x). In addition,

the local intensity range is also an important characteristic, but is sensitive the noise.

To address this issue, the distance between the first and third quartiles, namely the

inter-quartile range (IRQ(x)), is calculated as the second feature. Furthermore, the

local intensity variance is a good candidate but again it is sensitive to outliers. In

contrast, the median absolute deviation (MAD) is much more robust and is computed

as MAD(x) := mediany∈B(x)(I(y)−MED(x)). Consequently, we define the feature

vector f(x) as:

f(x) = (MED(x), IRQ(x),MAD(x))T ∈ R
3 (20)

With the space of feature vectors thus defined, seed groups are now characterized by

the probability density function of the feature vectors estimated by:

pi(f) =
1

|Gi|
∑

x∈Gi

Kη(f − f(x)) (21)

where K is the kernel function. In this work, we use the Gaussian kernel. Its variance

is chosen to be η times the MAD of the seed group. η is preset to be 0.1, and we have

found that this works for all the cases tested.
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3.1.2 Contour evolution

To simplify the notation, we present the contour evolution in 2D. However it is

noted that the method can be easily extended to 3D. In fact, all the experiments

in Section 3.2 are in 3D. First, we denote the family of evolving closed contours as

Ci : [0, 1]×R
+ → R

2. Without interactions among contours (interaction is addressed

in Section 3.1.3 below), each contour evolves independently in order to minimize the

energy functional:

Ei(Ci) :=

∫

x in Ci

(pc − pi(x))dx + λ

∫

Ci

ds (22)

where pc is the cut-off probability density used to prevent the contour leakage [68].

Likewise, λ > 0 is the smoothness factor. Computing the first variation of Ei and we

obtain the flow of Ci:

∂Ci(q, t)

∂t
= [pc − pi(Ci(q, t)) + λκi(q, t)] N i(q, t) (23)

in which N i is the inward unit normal vector field on Ci and κi is the curvature of

the contour.

3.1.3 Contour interaction

Although the pc term in equation (22) helps to prevent contour leakage, in many

cases the result is not sufficiently satisfying. Indeed, it often results in the prob-

lem that certain regions are over-segmented, while some others are under-segmented.

The leakage issue, i.e., making decisions in a transitional region, is sometimes a dif-

ficult task even for the human visual system. However, one particular strategy the

visual system takes, is to approach the decision boundary from both sides by com-

petition, rather than preventing the leakage from a single direction. To this end, we

enable the interaction amongst the previously individually evolving contours using

standard principles from Newtonian mechanics. First, we regard the right hand side
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of equation (23) as the force applied on the infinitesimal curve segment at the position

Ci(q, t) =: p ∈ R
2. Now with the interaction among curves, such a curve segment

will also experience forces from other curves:

F ext
i (p) = −

∑

j 6=i

∫

Cj

e|p−Cj(w,t)|(pj(p) − pc)N j(p)dw. (24)

Accordingly, the curve flow equation for Ci is now updated as:

∂Ci(q, t)

∂t
= [pi(Ci(q, t)) − pc − λκi(q, t)] N i(q, t) + F ext

i (Ci(q, t)). (25)

The exponential term controls the “influence range” of the force. When curves are far

away, this term reduces the F ext
i effectively to zero. Moreover, using the “sparse field

level set” implementation [66], the computation of F ext
i is very efficient. In general,

the contour evolution scenario is as follows: At the outset, the contours do not touch

each other because the seeds are sparsely scattered in the domain. Thus each F ext
i

is approximately 0 and each contour evolves individually. As the evolution proceeds,

the contours get closer and the mutual interactions begin to take place. Moreover,

they will compete and finally rest at balanced (equilibrium) positions. Throughout

the whole process, the contours are governed by the action/reaction principle from

mechanics, and will never overlap with each other, which is a necessary feature for

multi-object segmentation.

3.2 Experiments and Results

Numerically, the contour evolution is implemented using the sparse field level set

method for fast computation and flexibility in contour topology [66]. Moreover, in

computing the robust statistics, the neighborhood size B(x) is fixed at 3 × 3 × 3.

This value was used throughout all of our tests. Similarly, the pc, λ in equations (25)

are respectively fixed at 0.1, 0.3 for all of the tests. In what follows, we demonstrate

the application of the proposed method in two scenarios: T1 weighted MR brain
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imagery (vervet and human), and CT abdominal data. The results are compared

quantitatively with manual segmentations.

3.2.1 Vervet brain segmentation

We first test on a T1 weighted MR images of the brain of vervets. In order to

highlight the leakage problem as well as how the proposed multi-object scheme solves

this problem, initially, only the white matter is segmented. As shown in Figure 18(a),

the contour leakage gives a final result that contains not only white matter but also

part of cerebellum. However, using the proposed method to segment several related

objects gives the result shown in Figure 18(b). It can be seen that the final labeling of

the cerebellum, shown in white, not only fully captures the cerebellum region, but also

effectively prevents leakage from intruding into the white matter. Furthermore, we

show the 3D views of the multiple segmented objects: white matter, cerebellum, and

ventricle. To highlight the region where the contour interaction between the white

matter and cerebellum helps prevent leakage, we show the view from both posterior

and inferior. It can be observed that there is no intersection between the contours.

In particular, the cerebellum contour nicely “pushes” the white matter contour out,

and so prevents leakage into the cerebellum.

(a) (b) (c) (d)

Figure 18: In Subplot 18(a), we only segment one object (white matter). However,
the contour leaks into part of cerebellum and part of brain stem. In 18(b), when
segmenting several objects simultaneously, the white label for cerebellum effectively
prevents the leakage. 3D plots include posterior 18(c) and inferior 18(d) views. It
can be observed that there is no intersection between the surfaces.
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3.2.2 Quantitative analysis for ventricle and caudate nucleus

In this second experiment, we extract both the ventricle and the caudate nucleus

from MR images and present the results both qualitatively and quantitatively. In the

experiment, the caudate nucleus is a difficult object to extract due to the poor contrast

with its surrounding tissues. In fact, if we only place seeds in the caudate, we get the

result shown in Figure 19(a) where the large leakage is circled. On the other hand,

if we also places some seeds around caudate, we also capture some portion of white

matter as shown in Figure 19(b) in almond color. Simultaneously, the caudate shape

is kept intact and no leakage occurs. The almond part can be discarded because the

caudate is the only object of interested and the final result is shown in Figure 19(c).

(a) (b) (c)

Figure 19: If only place seeds in caudate we get segmentation in Subplot 19(a)
where the leakage is circled in yellow (viewing from superior-right). After putting
some auxiliary seeds in the surrounding tissue we get results in the sagittal view
in 19(b) where the caudate shape is kept intact. Discarding the auxiliary region and
the caudate is shown alone in 19(c). (Sagittal view from right.)

Performing the same scheme on another subject gives the results in Figure 20(a)

and 20(b) where we show both the segmentation and the original image. In addition

to the caudate, the method is also applied on ventricle which is an easier segmentation

task. In total, we performed 10 tests on different subjects. The Dice coefficients are

computed against expert segmentations, and are plotted in Figure 20(c).
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(a) (b) (c)

Figure 20: Subplot 20(a) and 20(b) overlay the segmentation results on the original
images. The almond region is again auxiliary for preventing leakage. Subplot 20(c)
shows the Dice coefficients of segmenting 10 ventricles and caudates, comparing with
expert segmentation.

3.2.3 Abdominal organ segmentation

The proposed algorithm is general purposed and can be used for many different tasks.

Indeed, although the previous examples only utilize the multi-object segmentation

capability for leakage prevention, in the last experiment, 11 different organs/tissues

are extracted from an abdominal CT image. The size of the image is 512× 512× 204

and the running time on a machine with 3.0GHz Intel Core 2 Quad CPU and 8G

memory is about 8 minutes. The result is shown in Figure 21.

(a) (b)

Figure 21: Segmentation of heart, two lungs, liver, two kidneys, spleen, abdominal
aorta, pelvis, bladder, skin/muscle/fat. The subplot 21(b) removes skin/muscle/fat
but overlays the original image.

37



www.manaraa.com

3.3 Discussion

In this note, we proposed a general-purpose image segmentation scheme for medical

data. In particular, the image features are extracted using certain local robust statis-

tics as the segmentation criterion. Subsequently, the object characteristics are learned

from the user initialization which is further used to guide the active contour evolution

in a variational framework. Furthermore, we incorporate the interactions between the

contours into the evolution motivated by simple principles from mechanics. This not

only effectively reduces the contour leakage, but also results in a multi-object seg-

mentation scheme without assuming that the union of the segmentation regions is

the entire the whole domain.

Future work includes exploring more choices for the image features, such as

Fourier/wavelet descriptors. Furthermore, we will incorporate shape priors for the

multiple targets. Combined with the contour interaction, this is expected to further

improve our results.
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CHAPTER IV

IMAGE REGISTRATION AND SEGMENTATION IN A

COUPLED SHAPE BASED MODEL

In some situations, the data driven image segmentation alone is not sufficient to

guarantee the outcome of the segmentation. Indeed, the noise as well as the low

contrast still remain to be difficult problems. To further improve the results, we need

the shape prior as a guiding information in the segmentation process. Therefore,

in this chapter we combine the image registration, statistical learning, and image

segmentation in a coupled shape-based framework.

4.1 Proposed method and experiments

In Section 4.1.1, we demonstrate how to represent images as point-sets, and register

images in the point-set framework under a particle filtering framework. After that,

the shape prior is constructed in Section 4.1.2. Next, in Section 4.1.3, the shape prior

is combined with the local image statistics to perform the segmentation. We note

that experiments and results will be given as each method is presented.

4.1.1 Prostate Shape Registration

The way we represent images is crucial and so we summarize here some of the more

common representations. We define an (intensity) image to be a non-negative func-

tion f : Ω → R
+, where Ω is some compact domain in R

d. In this work d = 2

or 3. Numerically, a given image may be represented as a discrete function defined

on a uniform grid, where a value is associated with each spatial sampling location,

namely the image intensity. We will refer to this as the discrete function represen-

tation (DFR). Using the probability density function (PDF), below we will define
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another representation called the point-set representation (PSR) for images. The

central idea is to represent the image as a set of random samples rather than as a

discrete function. We will show that such a representation is fully equivalent to DFR,

and so no information is lost. However, PSR handles some of the difficult registration

issues that are normally associated when the images are represented using DFR.

4.1.1.1 Point-set Representations of Images

We now assume that our image is represented by a continuous function f on the

compact image domain Ω. Set ‖f‖1 :=
∫

Ω
f(x)dx and f̃(x) := f(x)/‖f‖1, we then

have:










f̃(x) ≥ 0, ∀x ∈ Ω (26)
∫

Ω

f̃(x)dx = 1 (27)

This simple normalization allows us to treat f̃ as a PDF defined on Ω. In doing so, we

can then represent the image f by drawing samples from this distribution. Indeed, we

adopt the rejection sampling algorithm of [12] in order to obtain M samples from the

above distribution, giving the set of points P = {p1, . . . ,pM : pi = (pxi , p
y
i , p

z
i ) ∈ Ω}.

Unlike DFR, where a real (or integer) number is associated with each spatial

position, the image is now purely represented by 2D or 3D points. Consequently, the

higher intensity regions in the image are now represented as the denser points in the

corresponding point set.

It is easy to show that the DFR representation can be easily obtained, modulo

a normalization factor, from the PSR. Indeed, this is actually the PDF estimation

problem [15]. Given the PSR P = {p1, . . . ,pM : pi = (pxi , p
y
i , p

z
i ) ∈ Ω}, the DFR can

be approximated as:

f̃M(x) :=
1

M

M
∑

i

Kσ(x − pi) (28)

where Kσ(x) is a kernel function and σ is its bandwidth. As M → ∞ and σ → 0, we

have f̃M(x) → f̃(x) [15].
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4.1.1.2 Affine Image Registration under PSR

Given the images f, g : Ω → R
+ we can obtain the corresponding PSR’s as described

in the previous section. We denote the point-set for g as Q = {q1, . . . , qN : qi =

(qxi , q
y
i , q

z
i ) ∈ Ω}. Then, we register the two images f and g by aligning their corre-

sponding point-sets P and Q using the following:

E(A, t) :=
1

N

N
∑

i=1

‖Aqi + t − Cl(Aqi + t)‖ +
λ

det2(A)
(29)

where A ∈ R
3×3, det(A) 6= 0 is the affine transformation matrix, t ∈ R

3 is the

translation vector, and Cl : R
3 → P maps a point in R

3 to its closest point in P.

Note that the second term in (29) with weighting λ > 0, penalizes det(A) from getting

close to zero. Indeed, this is because the optimization process wants to register the

two point sets by minimizing the cost E with respect to A and t. However, without

the second term, one cheap but incorrect way to minimize E is to set A to be the

zero matrix. Then the moving point set, after multiplied by A, will degenerate to a

single point (0, 0, 0), and one can then set t to the coordinate of any point in the fixed

point set for a “perfect match”. In such a scenario, the cost function E will be 0, but

apparently it is a false result. Hence, to prevent such a degeneration, we penalize the

trend of the determinant of A going to 0 in E with the second term. In this case,

if the determinant A becomes close to zero, this term will increase to prevent such

situation.

Concerning numerical details, a KD-tree data structure may be utilized to achieve

a fast (O(logM)) search [29]. The minimization of the registration cost functional

E in (29) is a 12 dimensional nonlinear unconstrained optimization problem (6 di-

mensions for each 2D image). The gradient of E with respect to the affine matrix A

and translation t are computed. Then the BFGS algorithm, one of the most popular

quasi-Newton methods [41], is employed to obtain a fast (super-linear) convergence.

The resulting (locally) optimal affine transformation parameters are applied to the
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image g.

One of the advantages of using PSR is that it naturally handles the case of large

translations between the two given images. Specifically, many registration schemes

under the DFR align the images by minimizing certain cost functionals. However,

the cost functional usually takes an integral or summation form evaluated on the

domain of overlap of the two images. Hence, a small cost functional value may be

due to the effect of the overlapping domain being small, rather than the two images

being well registered. This situation is often observed when two images differ by a

large translation. In addition, under such a configuration the fastest way to reduce

the cost functional is to further shrink the overlapping domain area by increasing

the translation. However, this will only degrade the registration result. This is a

fundamental drawback of using DFR. In contrast, without the concept of the fixed

image domain, the registration in PSR naturally handles the above difficulty. In

particular, when the translation is large, the gradient always tends to reduce this

distance. This will be demonstrated in the experimental section.

Another commonly known problem with DFR is the long computation time. Un-

der DFR, traversing of the domain grids may be quite time consuming. In contrast,

PSR sparsely represents the image by far fewer points (comparing to the number of

the grids in DFR). Hence, the solution time is significantly reduced by more than two

orders of magnitude (see Table 1 below).

4.1.1.3 Prostate Shape Registration via Particle Filtering

Though PSR has certain advantages, it is still a local optimization procedure. Specif-

ically, although large translations are effectively handled, large rotations are not.

Unfortunately, a large rotation is common in prostate registration where the supine

and prone views of the prostate need to be registered. However, in such supine/prone

registration cases, we have the prior knowledge that the optimal rotation would be
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either close to 0◦ or 180◦. Ideally, we would like to naturally incorporate this a priori

information in a global registration setting. Thus, we treat the registration problem

as system parameter estimation task where the twelve transformation parameters

constitute the state variables of a dynamic system. Such estimation can be solved

under the particle filtering framework. Moreover, using particle filtering, the a priori

information can be easily combined. Therefore, we adopt the method in Section 2.2.1

to achieve the global optimal registration for the prostate shapes (under PSR).

In Section 4.1.1.1 two salient properties of using PSR in registration were dis-

cussed. It is further argued there that such advantages enable one to use particle

filtering to achieve global registration under PSR. Firstly, to pursue global optimiza-

tion, essentially all methods (e.g., simulated annealing, genetic algorithms, and even

particle filtering) contain the idea of stochastically exploring a large part of the state

space. However, under DFR those states corresponding to long translations will re-

sult in small or even zero cost functional values and therefore will be erroneously

accepted. This fundamentally excludes the applicability of particle filtering to DFR-

based (local) registration schemes. Contrastingly, the cost functional (29) behaves

consistently, and can be nicely fitted to the particle filtering framework. Secondly,

the global scheme is computationally more costly. Thus, the local step in the more

global scheme should be computationally efficient. Here again, PSR fits well with this

requirement.

4.1.1.4 Registration Experiments and Results

We provide experiments to demonstrate (1) the behavior of different registration cost

functionals, (2) robustness of the proposed method to initialization, (3) supine/prone

prostate registration, and (4) computational efficiency. It has been noticed that the

number of the points in the set, which is derived via PSR, is a parameter for the

proposed method. However, in all of the experiments performed, we use 500 points
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to represent a moderate size 2D image and 5000 points for a 3D image. Nevertheless,

we have observed that the algorithm is fairly robust to the choice of number of points.

Cost functional behavior In the first set of experiments, we compare the region of

convergence for several widely used cost functionals to that of our proposed method.

These include mean square error (MSE) in [59] as well as the scheme based upon

mutual information (MI) [65, 61]. This is achieved by first translating a 2D image, as

seen in Fig. 22(a), in the x-y plane. Then, one can interpret the energy as a function

of x-y displacement (Fig. 22(b)-22(d)).

Ideally, the cost functional should have a minimum at (0, 0) and smoothly increase

as the translations increase. Fig. 22(b) is the plot of the MSE with respect to various

translations. The valley in the middle can be regarded as the “region of convergence.”

That is, if the initial translation parameter is within this region, the MSE registration

algorithm will gradually drive the parameter to converge to the ground truth. Not

only is the region of convergence small (relative to that of PSR), more importantly,

the cost functional values drop to zero when the transitions are large. As described

in Section 4.1.1.3, such a phenomenon makes MSE an inadequate cost functional for

“stochastic probing” based global image registration.

Fig. 22(c) is obtained in a similar fashion except that (negative) mutual informa-

tion (MI) cost functional is now employed. Moreover, to mitigate the error resulting

from the implementation, we opt to use the MI registration scheme found in the In-

sightToolkit [25]1. Apart from being noisy, the cost functional is flat for most of the

regions. Such behaviors of the cost functionals make the registration process very

sensitive to the initialization and the optimization step size.

As can be seen in Fig. 22(d), the minimum of the proposed cost functional is

1The image is first normalized to [−1, 1] and smoothed with a Gaussian filter with variance 10.0.
Then, the image is translated and the MI is measured.
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(a) Testing prostate
binary image

(b) MSE (c) MI (d) PSR

Figure 22: Plot of different cost functional values with respect to various 2D trans-
lations.

located at the correct position and smoothly grows monotonically outward as trans-

lation increases. This result can be mainly attributed to the representation provided

under PSR, whereas MSE and MI registration approaches suffer the inherent draw-

back of representing an image on a fixed grid. Hence, no matter how large the

translation is, the registration process is able to drive it to the correct place.

Robustness to Initialization Previous section gives more of a visual demonstra-

tion of the behavior of the various cost functionals. It provides the intuition but has

certain limitations: Due to the dimensionality, the image is restricted to 2D and the

transformation is restricted to 2D translation. However the real optimization is in

6D affine transformation space for 2D image, and 12D affine transformation space

for 3D images, which are difficult to display. To evaluate the robustness in there, in

this section we perform real test for 2D images. Specifically, two identical images are

registered by starting from a random position in the registration parameter space.

Therefore, the ground truth for the registration is the identity matrix and the zero

translation vector. Again, three types of registration are compared, namely affine im-

age registration using both MSE and MI as well as our proposed method. All three

methods are run until convergence. Furthermore, to evaluate the performance of the

registration, the affine matrix and the translation vector are concatenated together

to form a 6 dimensional state space vector. The registration result is then compared
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with the ground truth by the vector l2 metric, denoted as the “recovery error.” We

note that the initial affine matrix and the translation vector are perturbed separately.

This is because usually the perturbation for translation is one or two degrees of mag-

nitude larger than that of the affine matrix. So if they are perturbed together, the

recovery error will be dominated by its translation components.

Thus, the robustness to the initial translation is tested first. The initial trans-

lation vector is set to a Gauss random variable with the standard deviation (STD)

ranging in {5, 10, . . . , 25}. For each STD, 100 realizations are generated as the ini-

tial translation, and the initial affine matrix is set to the identity matrix. After the

registration converges, 100 recovery errors are recorded for one type of registration.

Fig. 23(a) shows the means of the recovery errors at different STD levels. The hor-

izontal axis shows the STD of the initial translations vector, while the vertical axis

is the mean of the recovery error. It can be observed that when the initial pertur-

bation becomes larger, the MSE and MI registration recovery errors grow larger. At

the same time, the PSR always register the two images. Such a result is consistent

with the cost functional analysis in the previous section. In addition to the means,

Fig. 23(b) shows the spread in the recovery errors. Specifically, the notches indicate

the medians of each set of 100 recovery errors while the box encloses those recovery

errors within one quartile. This plot further demonstrates that when using MSE- or

MI-based approaches, the median performance is not only poor, but the stability is

also unsatisfactory.

The experiment is conducted similarly for the initial affine matrix. The initial

translation vector is now set to zero while the affine matrix is a perturbed identity

matrix. Specifically, each element of the identity matrix is added with a Gauss random

variable with the STD ranging in {0.1, 0.2, 0.3, 0.4}. Similarly, 100 tests are performed

for each STD for all three types of registration schemes and the recovery errors are

recorded. Fig. 24 shows that as the perturbation on the initial state gets larger, the
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(a) (b)

Figure 23: Recovery error analysis for initial translation perturbation. Details given
in text.

(a) (b)

Figure 24: Recovery error analysis for initial affine matrix perturbation. Details
given in text.

mean recovery errors of all the three registration schemes grow. Interestingly, not only

does the mean recovery errors of the PSR scheme grow the least, but their variances

are also the smallest.

Supine-Prone prostate registration One challenging problem in prostate regis-

tration is to register the supine and prone prostates. Fig. 25 shows one case of the

supine/prone prostates in the axial, sagittal and coronal views. The moving prostate

3D image (blue) is overlaid on the fixed image (white).

First, MSE image affine registration is used to register the two images and the

result is shown in Fig. 26. The moving image (red) is stretched to align with the fixed

image. However, the local registration scheme could not detect the global optimal

configuration 180◦ away. Therefore, it provides an erroneous result where different

sides of prostates are aligned.
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(a) (b) (c)

Figure 25: Supine/prone prostates, before registration. Subplots show the axial,
sagittal, and coronal views.

(a) (b) (c)

Figure 26: Supine/prone prostates registration using image affine registration with
respect to MSE cost function. Subplots show the axial, sagittal, and coronal views.

The registration using the proposed global affine registration scheme under PSR

is then conducted. Under the particle filtering framework, the prior knowledge can

be incorporated into the construction of the prior distribution p(x0) to reflect the

fact that the two images may (or may not) differ by 180◦ around the z-axis. In other

words, under the probability framework this can be interpreted by the fact that the

optimal rotation around the z-axis, θ, has a higher probability of taking the values

near 0◦ and 180◦. Thus, its prior distribution is defined to be:

p(θ0) =
1

2
√

2πσ

(

e−
θ2

2σ2 + e−
(θ−π)2

2σ2

)

, (30)

whose plot is shown in Fig. 27. In cases where such prior knowledge is not available,

a uniform distribution is a common choice.

The results generated by the proposed algorithm are shown in Fig. 28. The

registered moving image is denoted by the red color and it can be observed that the
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Figure 27: Prior for rotation

large rotation is correctly recovered. We can better appreciate the global registration

results using the 3D view as seen in Fig. 28(d). The fixed prostate is again in white,

the moving image (before registration) is in green, and its registered version is in red.

Furthermore, it is noted that although particle filtering is a general state estima-

tion framework and theoretically registration using MSE/MI also seems to fit in such

framework. However, for our purposes, it may not be the best choice. This is mainly

due to two reasons: First, as plotted in Fig. 22, MSE and MI cost functionals depend

on the overlapping of the image sample grids. Hence, to explore the optimal solution,

particle filtering samples at those regions corresponding to (false) low cost functional

values, such as the large remote areas in Fig. 22(b) and 22(c). Secondly, the com-

putation time of using MSE/MI with particle filtering is very long especially for 3D

case. This further prohibits the combination of MSE/MI with particle filtering.

In addition to a typical case for demonstration here, the global registration scheme

has been applied to 112 data sets2 to test the robustness of the supine/prone prostate

registration. For this purpose, we arbitrarily pick one image as the template and

align all the other 111 images with the template. As seen in Fig. 29, the variation

2public available at http://prostatemrimagedatabase.com/index.html

49



www.manaraa.com

(a) (b) (c)

(d)

Figure 28: Supine/prone prostates registration using PSR affine registration and
particle filtering. Subplots show the axial, sagittal, coronal, and 3D views.

(a) Axial (b) Sagittal (c) Coronal

Figure 29: Overlay all the prostate shapes before registration.

in pose and shape among the 112 images are very large before registration. After the

proposed supine/prone prostate registration method is run to convergence in all of

the 111 tests, the registered images are summed and we arrive at the results presented

in Fig. 30. It can be seen that the pose and shape variations are drastically reduced.

Increased Efficiency Registering image via point-sets is much more efficient, espe-

cially in 3D. The mean times of registering the 112 prostates using different methods

are shown in Table 1. The efficiency is due to the sparsity of the PSR. For instance,
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(a) Axial (b) Sagittal (c) Coronal

Figure 30: Overlay all the prostate shapes after registration.

Table 1: Running times comparison. Image size is 256 × 256 × 26. MSE and MI
registration codes are implemented as in [25]. 5000 points are used for PSR.

Image MSE MI Proposed Method
3D prostate 433.5 sec 610.0 sec 2.5 sec

in the prostate case shown in Fig. 28, 5000 points are used to represent the image,

whereas 1703936 image voxels are contained in the whole image. Hence, the compu-

tation is very significantly reduced. All the methodologies are implemented in C++

with a Pentium R©3.20GHz CPU with 4G RAM.

4.1.2 Shape Prior Construction

With the training shapes registered, the shape prior is constructed for the subsequent

segmentation. Before learning, an appropriate shape representation is important.

Interestingly, although binary/label maps are widely used in literature, they violate

the usual Gaussian assumption in the PCA framework. This can attributed to the

fact that the intensities of the binary/label map can only be 0 or 1, which are not

likely to constitute a Gaussian distribution. The signed distance function (SDF) is

also commonly used. However, the SDF representation generally has large values

far from the zero level set. Therefore, during the learning step, the variations may

overwhelm those around the zero contour causing inconsistencies in shape learning.
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4.1.2.1 Shape representation using hyperbolic tangent

In this work, we modify the SDF via a transformation of the form s(x) = T (SDF(x))

to provide a better representation for shapes. More precisely, we want to choose the

mapping T that preserves the zero level set of the SDF and eliminates the large

values/variances far from the zero level set.

Sigmoid functions are good candidates for this purpose. Thus, a natural choice is

to apply the hyperbolic tangent to the SDF to represent shapes:

s(x) = tanh(SDF(x)) =
e2SDF(x) − 1

e2SDF(x) + 1
. (31)

Note that tanh(0) = 0 and lim
t→±∞

tanh(t) = ±1 so we preserve the zero level set as the

object boundary, but eliminate the variance far from the boundary. This will benefit

the learning phase. Moreover, since tanh′(x)|x=0 = 1, we have that tanh(x) ≈ x when

x ≈ 0. Hence, around the zero level set, s(x) is close to the SDF. This representation

of shape will be referred to as the T-SDF (T for tanh) in what follows.

Denote the N manually segmented training images, which have been previously

aligned by the method described above, as Ii : Ω → {0, 1} where Ω ⊂ R
3. The T-SDF

representations of the registered images are then computed as si = tanh(SDF(I)) :

i = 1, . . . , N .

4.1.2.2 Shape learning

The standard PCA is adopted to learn the shapes. The mean shape is obtained as:

s̄(x) =
1

N

N
∑

i=1

si(x). (32)

Then, the mean shape is subtracted from each shape, i.e. s̃i = si − s̄. Since each

s̃i is a 3D volume, we can concatenate the rows to form a long vector ηi. Then the

covariant matrix is formed as

C =
1

N
(η1, . . . , ηN) (η1, . . . , ηN)T , (33)

52



www.manaraa.com

and the singular value decomposition gives:

C = GΛGT (34)

where Λ is a diagonal matrix containing the eigenvalues and the columns ofG store the

eigenvectors. Note that these are reshaped to the original image size and are denoted

as gi(x). Usually, only the eigenshapes corresponding to the first L eigenvalues are

kept while the others (with smaller eigenvalues) are ignored. Hence, the shape prior

is a space spanned by {gi : 1, . . . , L}. In the subsequent segmentation, the shape is

constrained to lie within this space.

We note that besides the shapes of the prostate, the mean and the variance of the

image intensity within the prostate could also be learned if the training shapes and

their corresponding original images are both available.

4.1.3 Shape-Based Prostate Segmentation

In this section, we describe our segmentation strategy for MR prostate data. Briefly,

given the image to be segmented, it is preprocessed under a Bayesian framework to

highlight the region of interest. Then a variational scheme based on local regional

information is used to extract the prostate from the posterior image. We now give

the details.

4.1.3.1 Bayesian preprocessing

Given an image J(x), the likelihood lJ(x) is computed as

lJ(x) :=
1√
2πσ

exp

(

−(J(x) − µ)2

2σ2

)

, (35)

where the µ and σ are the mean and standard deviation of the object intensity,

respectively. Both µ and σ may either be provided by the user or learned during

the learning process. To compute the posterior we still need the prior term. While

uniform priors are often used in previous works [21, 67] where the posterior is in fact
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the (normalized) likelihood, we show in this work that with a careful construction of

the prior, the posterior is more convincing and makes the segmentation easier.

To this end, we propose to use the image content based directional distance in the

prior. This means that both the image content and the distance to the object center

are considered when calculating the distance. Specifically, given the image J(x), we

first construct the metric [46, 48, 38] d : Ω × A→ R
+ by:

d(x, φ) = |J(x − J(x + φ))| , (36)

where φ ∈ A = {(0, 0,±1), (0,±1, 0), (±1, 0, 0)}. Denote the estimated center of the

object by pc. Similarly to µ above, pc may be learned or assigned. This enables

us to compute a directional distance map (DDM) ψ by solving the Hamilton-Jacobi-

Bellman equation:














0 = inf
φ∈A

{ d(x, φ) + 〈φ,∇ψ(x)〉} ,

ψ(pc) = 0.

(37)

Equation (37) may be solved efficiently by using the the fast sweeping method pro-

posed by Kao et al. [27]. Thus, with ψ obtained in this manner, we can define the

prior by prior := exp(−ψ), and compute the posterior by the Bayesian rule.

Figure 31 shows the comparison of the posteriors computed using different priors.

The images shown are one slice taken from the given 3D prostate volume. In both

images, the red contour shows the target object. In Figure 31(a), a uniform prior

is used to compute the posterior. Since the average intensity within the prostate is

similar to that of the surrounding tissue, both prostate and surrounding tissue have

high posterior (bright), poorly differentiate the object from the background. On the

other hand, in Figure 31(b), the prior was constructed from the DDM. Here the

prostate is almost the only bright region in the posterior image. From the posterior

image alone we can already differentiate the prostate fairly well. Though the bright
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(a) (b)

Figure 31: Posterior image of a slice: (a) using uniform prior, (b) using DDM as
prior.

region below the prostate is difficult to exclude at this stage, the subsequent shape-

based segmentation recognizes it as background.

4.1.3.2 Segmentation in the posterior image

We propose a local regional information based segmentation scheme, in which the

segmentation curve is driven to maximize the difference between the average posterior

within a banded region inside and outside of the curve. More specifically, given the

current segmentation curve, which is represented by the zero level set of the T-SDF,

it is driven to enclose the desired object in the posterior image K(x) by minimizing

the following cost functional:

E := −1

2
(u− v)2

= −1

2

(

∫

Ω
HB(h(x))K(x)dx
∫

Ω
HB(h(x))dx

−
∫

Ω
HB(−h(x))K(x)dx
∫

Ω
HB(−h(x))dx

)2

, (38)

where h(x) is the T-SDF representation of the curve and is defined as:

h(x) = s̄(Ax + T ) +
L

∑

i

ωigi(Ax + T ). (39)
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(a) Banded Heaviside function (b) Derivative of the Banded Heaviside func-
tion

Figure 32: Banded Heaviside function and its derivative with different ǫ coefficient
values.

Here, A and T denote the affine matrix and translation vector, respectively. Moreover,

in equation (38), the HB : R → R is the “banded Heaviside function” defined as:

HB(t) =
1

π

(

arctan

(

t

ǫ

)

− arctan

(

t−B

ǫ

))

. (40)

The banded Heaviside function and its derivative are plotted in Fig. 32.

The banded Heaviside function realizes the localized property of the cost func-

tional. Therefore, u is the mean of posterior in a banded region inside the object.

The width of the band is determined by B ∈ (0, 1]. (B = 0.8 is a choice that worked

well for all our tests.) Similarly, v is the mean of posterior in a banded region outside

the object. Comparing to [71, 7], this cost functional is more robust to the influence

remote to the curve. Moreover, because the value range of the T-SDF representation

is (−1, 1), as B → 1, E in (38) converges to the global cost functional as in [71, 7].

By minimizing the segmentation cost functional with respect to T , A and the

ωi’s, the optimal contour and transformation are found. To achieve this, the gradient

of E is calculated and this finite dimensional (12+L dimensions in 3D) nonlinear

optimization problem is solved using the BFGS method for fast convergence [41].

4.1.3.3 Segmentation Results

33 MRI prostate data sets were collected from different subjects on a 3.0 Tesla Philips

machine from Queen’s University, Kingston, Ontario, Canada [31]. The image volume
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grid size is 256× 256× 27 with 0.51mm in-plane resolution and 3mm slice thickness.

The boundaries were manually traced out, and 20 cases were utilized for learning while

the other 13 for testing. For comparison, we also trained and tested the algorithm

proposed in [59] with the same set of training data and testing data, respectively.

Specifically, among the three choices for the segmentation energy in [59], the Chan-

Vese model is chosen.

Fig. 33 shows the segmentation result for one patient in the testing data set. Note

that we have chosen the number of principle modes to be L = 6. The center of the

target object, i.e. the pc in (37), is given by a click in the prostate region. The mean

and standard deviation for (35) are 300 and 100, respectively.

Fig. 34 shows the segmentation result for a second patient in the testing data

set. In the experiment, all the parameters are the same as the previous case except

the mean and the standard deviation are 150 and 50, respectively. (In this figure, it

appears that the intensity within the prostate is similar to that of Fig. 33, but this is

the result of the window/level being adjusted for better visual appearance.)

In the experiment of Fig. 35, the mean and the standard deviation are 500 and 200,

respectively. Although the bladder in this image is extremely bright, the proposed

method correctly captured the position and the shape of the prostate.

Fig. 36 shows another example where the prostate shape is different from the

previous ones in that this one is more spherical. Still the method yields a visually

excellent segmentation and this indicates that the learned shape prior does have the

capacity to represent different shapes. Note, the mean and the standard deviation in

this case are 200 and 100, respectively.

Furthermore, instead of showing the screen shots of all 13 testing results, we

also compute the Dice coefficient which quantitatively compares each segmentation

result (by the proposed method as well as the method given in [59]) with the corre-

sponding manual drawing. The two sets of coefficients are plotted in Figure 37. It
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(a) Sagittal (b) Coronal

(c) Axial (d) 3D

Figure 33: Segmentation results for Patient 1

can be seen that the proposed method provides satisfying results overall. Note that

the key reason that the method of [59] produces low Dice coefficients for data sets

#3, #11, #12, and #1 is because it employs the Chan-Vese model which assumes the

image to be bi-modal. However, those four images are T2 weighted image in which

the bladder region is the brightest. Therefore, it extracts the brightest region and

misses the prostate region. On the other hand, the proposed method in this paper

only looks at the locally prominent features and hence is more robust to the influence

in the remote regions.
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(a) Sagittal (b) Coronal

(c) Axial (d) 3D

Figure 34: Segmentation results for Patient 2

(a) Sagittal (b) Coronal

(c) Axial (d) 3D

Figure 35: Segmentation results for Patient 3

59



www.manaraa.com

(a) Sagittal (b) Coronal

(c) Axial (d) 3D

Figure 36: Segmentation results for Patient 4

Figure 37: Dice coefficients of the proposed method and the method in [59]. The
3rd, 11th, 12th, and 13th testing images are T2 images where the bladder is very
bright. Hence the Chan-Vese model used in [59] extracts the bladder region instead
of prostate.
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CHAPTER V

MULTI-RESOLUTION SHAPE REPRESENTATION AND

SHAPE BASED SEGMENTATION USING WAVELETS

WITH APPLICATIONS TO RADIOTHERAPY

PLANNING

The method proposed in Chapter 4 has certain disadvantage that the number of

eigen-shapes are limited by the number of training set, which is usually not large.

Furthermore, the eigen values corresponding to the eigen-shapes indicate the mag-

nitude of the variances. Hence, the local/small scale shape variance is likely to be

overwhelmed by a more global/large scale shape variance. However, in many cases

the small “bump” on a smooth surface is an important indicator of pathology. To

address this issue, we propose a multi-scale representation of shape. Furthermore,

the shape is learned in multiple scales, resulting in eigen-vectors in multiple scales.

Therefore, not only this provide more abundant eigen-modes, but also the local/small

shape variance will not get overwhelmed by global/large ones.

Furthermore, such segmentation technique can be applied to the scenario of ra-

diotherapy planning. Indeed, during the past half-century, the cornerstone of treat-

ment for brain metastases has been whole brain irradiation (WBI). WBI has multiple

salutary effects including rapid relief of neurological signs and symptoms as well as

enhanced local control. Unfortunately, WBI may also engender side effects including

memory deficits and decrements in quality of life. Since memory control is thought

to be mediated by the hippocampus, attention has been turned to whole brain radio-

therapeutic techniques that allow sparing of the hippocampus. In order to be able to
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minimize dose deposition within the hippocampus, clinicians must be able to confi-

dently identify that structure. However, manually tracing out the hippocampus for

each patient is time consuming and subject to the individual bias. To this end, an

automated method can be very useful for such a task.

5.1 Proposed Method

In this section, we provide the details of using the proposed multi-scale shape based

segmentation technique to extract the hippocampus region from the MR brain im-

agery. In general, the method can be divided into an off-line learning step and an

on-line segmentation step. In the learning step, a set of MR brain images (called

training images) along with their segmented label maps for the hippocampus (and

the amygdala) are provided for the statistical learning algorithm. The reason for in-

cluding amygdala is because the visual boundary between hippocampus and amygdala

is hardly seen in the images at hand. Hence, in order to obtain an accurate hippocam-

pus segmentation, we first treat the hippocampus-amygdala as a single complex in

the shape learning. After the shape of the complex is learned, such shape information

is then utilized in extracting the complex from a new MR brain image (called the raw

image). Next, the hippocampus and the amygdala are separated to form the final

result. The details of each step will now be provided.

5.1.1 Shape learning

A set of N training MR images: J1, J2, . . . , JN : R
3 → R is provided for the algorithm,

along with the corresponding label maps: U1, U2, . . . , UN : R
3 → {0, 1, 2} in which

the hippocampus and amygdala are labeled by 1 and 2, respectively. For the reasons

stated above, the labels of the amygdala and hippocampus are first combined as a

single label. That is, we define Ũi(x) = 1 if Ui(x) = 1 or 2. Then, the shapes of the

hippocampus-amygdala complex (HAC) are aligned so that the variances captured by

the subsequent statistical learning step are only due to shape, not pose. The aligned
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shapes are denoted by V1, . . . , VN . Next, in order to aid the statistical learning and

the subsequent segmentation, we represent the aligned shapes as sparse field level set

(SFLS) function [66], and denote them by L1, . . . , LN .

At this point, we are able to formulate the multi-scale shape representation for

the HAC’s. In general, given a SFLS function L, its wavelet decomposition is written

as:

W (u) := DWT [L(x)] (41)

where we assume the domain dimensions of L are all power of 2. Different wavelet

bases can be chosen. In fact, in this study we tested the Daubechies wavelets D4, D6,

andD8, but the final segmentation results were not significantly affected by the choice.

Moreover, the wavelet coefficients are shrunk using the soft-thresholding proposed

in [13] to remove the noise on the shape. By slight abuse of notation, the denoised

wavelet coefficients are still denoted by W , which are stored in an 3D volumetric

array the same size as L. Next, in order to represent the shape in multiple scales, the

coefficients are decomposed into multiple bands corresponding to various scales. As

is illustrated in Figure 38, the coefficients in each difference scale are concatenated

to form a long column vector, called band, and all coefficients are rearranged into

different bands.

Formally, we write this operation as:

R[W ] = {B1, B2, . . . , BK} (42)

where K is the total number of bands. For example, in Figure 38 there are K = 13

bands in total. It is noted that later we will need to “inversely rearrange” the wavelet

coefficients from the bands and this process is denoted as:

R−1 [{B1, B2, . . . , BK}] = W (43)
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Figure 38: Decomposition of wavelet coefficients into various bands. The band
structure of wavelet coefficients for an image having size 16 × 16. The coefficients in
difference scales are rearranged into different vectors (bands).

Up to this point, the boundaries of the N hippocampus-amygdala complexes are now

represented by N band structures:

B(i) =
{

B
(i)
1 , B

(i)
2 , . . . , B

(i)
K

}

, i = 1, . . . , N (44)

A nice property of such multi-scale representation derives from the fact that the

shape variance in different spatial locations and frequency scales are now separated

in various bands.

In order to statistically learn the shape variances existing in the training shapes,

we apply principle component analysis (PCA) to each band in order to compute the

statistical model of the shape. More explicitly, the mean band structure is computed

as:

B̄ =
{

B̄1, B̄2, . . . , B̄K

}

(45)

=

{

1

N

N
∑

i=1

B
(i)
1 ,

1

N

N
∑

i=1

B
(i)
2 , . . . ,

1

N

N
∑

i=1

B
(i)
K

}

(46)

The mean shape can be considered as the shape without any variations, regardless

of the scale of the variance. Because of this, it is expected that the mean shape
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computed this way should be consistent with the mean shape from a non-multi-scale

shape representation. In fact, it is easy to show that such mean shape, defined as:

M := DWT−1
[

R−1
[

B̄
]]

(47)

is the same as the one computed in [34, 59].

While the proposed shape representation does not affect the mean shape, the

multi-scale property is beneficial when the shape variances are analyzed. In order to

utilize such property, PCA is performed in each band to capture the shape variance.

Formally, the mean of each band is first removed as B̃
(i)
k = B

(i)
k − B̄k; i = 1, 2, . . . , N .

The covariance matrix for the k-th band is then formed as:

Ck :=
1

N

N
∑

i=1

B̃
(i)
k

(

B̃
(i)
k

)⊤

∈ R
lk×lk (48)

where lk =
∣

∣

∣B
(1)
k

∣

∣

∣ denotes the length of the k-th band. Furthermore, the eigen-

decomposition of Ck gives:

Ck = QkΛkQ
⊤
k =

(

qk1, . . . , q
k
pk

)













λk1 0
. . .

0
. . . 0

. . . 0 λkpk













Q⊤
k (49)

where pk := min(N − 1, lk) and the vectors qkj ; j = 1, . . . , pk consist of the bases for

this band. In contrast to the PCA scheme used in [11, 34, 59], where for N training

shapes there are at most N − 1 bases for the whole learned shape space, here we

have bases in each band to record the shape variance at the given scale. Specifically,

since the band length is varying, in the k-th band, the number of bases does not

exceed pk. For an 2D image with size 16× 16 shown in Figure 38, it can be seen that

starting from the band B11, the band lengths lk, (k ≥ 11) are greater or equal than

64. So for a moderate size of training shapes, except for the first few bands, we have

pk = N−1. Hence the total number of bases is:
∑N

k=1 pk ≈ K(N−1). In comparison

to N − 1, this greatly enhances the capability of capturing the shape variances at

multiple scales.
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In order to construct the allowable shape space which restricts the subsequent

segmentation, we assume the eigenvalues obtained in Equation (48) are ordered de-

creasingly. Furthermore, the first Y eigenmodes, qk1, . . . , q
k
Y are picked to record the

shape variance in this band (scale). In practice, we fixed Y at min(6, lk). Moreover,

for every k = 1, . . . , K, the shape space in that band, Sk is defined as:

Sk :=























(

qk1, . . . , q
k
Y

)













√

λk1 0
. . .

0
. . . 0

. . . 0
√

λkY

























ak1
...

akY













; ai ∈ [−6, 6], ∀i























(50)

The above formula defines a hyper- rectangular shaped region centered at the

mean in each band, with axes of length 6 times the standard deviation. Equivalently,

this imposes a uniformly distributed prior for the shapes. In most of the literature,

however, the Gaussian distribution is used. We should note here that in order to

maximize the shape likelihood in the Gaussian case, there is always a tendency of

evolving towards the mean shape which eliminates the individual shape variance.

This is not always a desired property. On the other hand, the uniform distribution

does preserve the shape variances. Finally, we note that the “shape space” above is

in fact topologically closed but not a mathematical vector space, because it is not

closed under the addition.

5.1.2 Shape based segmentation

In this section, we describe our multi-scale shape representation based segmentation

strategy with its application on extracting the hippocampus from MR images. Briefly,

given the image to be segmented, first we use a registration method to estimate the

target location in the new image. Next, a data driven segmentation scheme is applied

to extract the initial estimate of the shape. Thirdly, the multi-scale shape constraints

are used to regularize the previously obtained shape in the learned shape space. The

second and the third steps are iterated until arriving at a steady state, which provides

the final segmentation. We now give the details.
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5.1.2.1 Shape initialization

Given a new image I : R
3 → R, the objective of the present section is to provide an

initial shape, which is to be used as the starting point for the subsequent segmenta-

tion process presented in the next section. To this end, an atlas-based segmentation

approach is adopted [50]. That is, all of the training images are deformably regis-

tered to the new image by maximizing mutual information [65, 52]. By using mutual

information, the proposed method is capable of handling images of multiple modali-

ties. With the optimal deformable transformations being computed and denoted by

T1, . . . , TN , the initial shape P (x) is then defined using the “majority rule”:

P (x) =











1, if
∑N

i=1 Ũi (Ti(x)) ≥ N
2

0, otherwise
(51)

This is to be used as the initialization for the subsequent segmentation for the new

image I.

5.1.2.2 Data driven segmentation

Given the initial shape P , the proposed segmentation method is an alternating data-

driven and multi-scale shape-based process that starts with a data-driven (not shape

guided) algorithm. Specifically, we use the energy functional defined in [33]: Denote

the initial contour, the level set representation of the initial shape P (x) in the previous

section, as φ. Then, the contour evolves to minimize the energy functional defined

as:

E(φ) :=α

∫

δφ(x)|∇φ(x)|dx +

∫

δφ(x)

∫

χ(x, y) (H(φ(y))(I(y) − ux) (52)

+(1 −H(φ(y)))(I(y) − vx)) dydx (53)

In Equation (53), H is the smoothed Heaviside function defined in [33], and δ

is the derivative of H. Moreover, the χ is the characteristic function for the r-

neighborhood around x, and α is a positive weighting parameter. One can compute
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the first variation of E with respect to φ and we obtain the corresponding gradient

descent flow for φ; see [33] for all the details. The evolution of φ is only performed

for a few steps (not until convergence), and the resulting φ is then fed into the shape-

filtering processing described in the next section.

5.1.2.3 Shape filtering with shape prior

Since physical imagery is never perfect (noise, etc.), the data driven segmentation φ

performed in the previous section usually suffers from under-segmentation, leakage,

or a combination of both. To solve this problem, the extracted shape in the previous

step is processed through a “shape filter” so as to fall into the admissible shape space.

First of all, the current contour φ is registered to the mean shape M in Equation (47)

by minimizing the following energy over all T ∈ bmT , the space of 3D similarity

transformations:

EM(T ) :=

∫

(φ(T (x)) −M(x))2 dx (54)

The optimal similarity transformation is denoted by T ∗ and the registered contour

φ(T ∗(x)) is denoted by ψ(x). Moreover, ψ(x) is sampled on the same discrete domain

as M(x), so that they have the same dimensions. Then, the wavelet transform is

applied to ψ(x) to obtain its band structure as:

B
ψ =

{

Bψ
1 , B

ψ
2 , . . . , B

ψ
K

}

(55)

In a manner similar to that of the learning part of the algorithm, the mean bands

are subtracted from B
ψ to obtain B̃

ψ as:

B̃
ψ =

{

Bψ
k − B̄k; k = 1, . . . , K

}

=:
{

B̃ψ
k ; k = 1, . . . , K

}

(56)

Next, in each of the K bands, the band B̃ψ
k is projected to the learned band space.

Without loss of generality, we can take the k-th band. Accordingly, we project B̃ψ
k to
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the bases vectors in the band {qkj ; j = 1, . . . , pk} and we obtain the coefficients:

Ak =





B̃ψ
k · qkj
√

λkj

; j = 1, . . . , pk





⊤

=: (a1, a2, . . . , apk
)⊤ ∈ R

pk (57)

In order to restrict the given novel space to the learned shape space, the novel

shape is mapped to its closest shape in the allowable shape space learned in the

Shape Learning part of the scheme. Accordingly, we adjust each Ak as:

Ãk :=











Ak, if‖Ak‖ ≤ 6

6Ak

‖Ak‖
, if‖Ak‖ > 6

(58)

After that, the adjusted band structure B̂
ψ

is obtained as:

B̂
ψ

:=























(qk1, . . . , q
k
Y )













√

λk1 0
. . .

0
. . . 0

. . . 0
√

λkY













· Ãk + B̄k;∀k























(59)

and the filtered shape ψ̃ is then obtained as:

ψ̃ = DWT−1
[

R−1
[

B̂
ψ
]]

(60)

Finally, the filtered shape is transformed back to the new image domain using the

inverse of the similarity transformation T ∗ recorded above. Thus ψ̃((T ∗)−1(x)) is then

used as the initial segmentation contour for the next-round data driven segmentation.

These two steps alternate until convergence. Usually, it only takes two or three

iterations for convergence on the data sets we used.

5.1.2.4 Separation of the hippocampus and amygdala

The previous segmentation provides a binary image H(x) : R
3 → {0, 1} representing

the hippocampus-amygdala complex, not the hippocampus. In order to form the

final segmentation of the hippocampus, the complex needs to be separated. Such

separation is achieved in this section using a scheme similar to described in Shape
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initialization section above. More explicitly, the binary label images Ũi(x)’s are

deformably registered to the newly obtained binary image H(x). The optimal de-

formable transformations are denoted by τ1, . . . , τN : R
3 → R

3. Then, the final label

image F (x) is defined as:

F (x) :=











1, if
∑N

i=1 Ui(τi(x)) ∈ [N, 2N ]

0, if
∑N

i=1 Ui(τi(x)) ∈ [0, N)
(61)

5.2 Experiments and results

In this section, we report the results of 24 spoiled gradient-recalled (SPGR) coronal-

plane volumetric T1-weighted images acquired in the Brigham and Women’s Hospital,

Harvard Medical School. The ages of the subjects range from 28 to 55 with mean

43.6 and standard deviation 7. The image resolution is 0.938 × 0.938 × 1.5mm3.

Fortunately, we have all the images segmented by radiologist at the Brigham and

Women’s Hospital. In order to make full use of all the data, we choose the leave-

one-out strategy to perform the shape learning and segmentation. That is, 23 out

of 24 images as well as their segmented shapes are used for learning and the image

left is segmented and the result is compared with its expert hand segmentation. The

segmentation is fully-automatic, so that no human interaction is needed. On an Intel

3.0GHz quad-core machine with 8G memory, segmenting one volumetric image takes

about 1 hour.

5.2.1 Hippocampus and Amygdala segmentation results

One important component of the proposed method is to first segment the hippocampus-

amygdala complex as a whole, and then separate the two components. In doing so,

we successfully solve the segmentation difficulty caused by the fact that the image

intensity patterns in amygdala and hippocampus are extremely similar, if not identi-

cal. Therefore, in Figure 39 we present the segmented surfaces for both hippocampus

and amygdala.
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Figure 39: The segmented surfaces of both hippocampus and amygdala for all the
24 subjects.

Figure 40: Axial slices of a segmentation result. The yellow contours are generated
by the proposed automatic segmentation algorithm, while the red contours are drawn
manually by an radiologist in BWH.

Moreover, it is noted that further qualitative and quantitative analysis in the

subsequent sections are targeted only on the hippocampus since that is the main

objective of present work.

5.2.2 Segmentation results shown by slices

From here on, we only perform the analysis on the hippocampus. In Figure 40 we

present the segmentation of one randomly chosen volume.

In this result, the hippocampus boundary generated by the proposed automatic

algorithm is colored in yellow whereas the manual boundary, drawn by an expert

radiologist at the Brigham and Women’s Hospital, is colored in red and used as the

reference. As can be observed from the comparison, the two sets of contours match

very well in all the slices. Due to space constraints, only one case is shown here.

However, it is noted that all the 24 experiments work consistently, and the detailed
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Figure 41: The surfaces of all the 24 testing hippocampi. The yellow ones are
generated by the proposed method and the ones below are the corresponding manual
results. On the manual surfaces, the color shows the difference between the automatic
and manual surfaces.

statistical analysis is given below.

5.2.3 Distance on mesh

In order to demonstrate the performance of the algorithm in 3D, in this section we

show the surfaces of the segmented hippocampi. In Figure 41, all the 24 hippocampal

surfaces are shown.

From Figure 41, we can observe that the manual delineated hippocampal surfaces

have many discontinuities. This is mainly due to the fact that the contours are

traced out slice-by-slice. Thus, although in that process the image information in

the adjacent slices is utilized, nevertheless, the resulting surfaces still have a jagged

appearance. On the other hand, the proposed 3D segmentation method achieves

better continuity and smoothness in all the three spatial dimensions, and the jagged

appearance is avoided.

Moreover, in order to quantify the differences between the two sets of results, the
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difference maps are computed: Given any point on the manual surface, the difference

map value is the closest distance to the automatically generated surface. Altogether,

they form a scalar function defined on the manual surface. The difference maps are

illustrated as the colors on the manual surfaces: Given any location on the surface,

the red/blue color means that there exists a relatively large/small difference between

the surface generated by expert and the algorithm, respectively. As can be seen in

Figure 41, except at few isolated regions, the automatic results are very consistent

with the expert manual results.

5.2.4 Further quantitative analysis

To further analyze the results quantitatively, similar to [45], the following param-

eters were measured: (1) left/right hippocampus volume; (2) volume ratio (auto-

matic/manual) for the left and right hippocampus (ideal value is 1); (3) volume

overlap ratio (VOR), i.e., the ratio of the volume of intersection to the volume of

union (ideal value is 1); and (4) correctly delineated volume (CDV), i.e., the ratio of

the volume of intersection to the manual volume (ideal value is 100%). In addition

to these, the Hausdorff distance (HD), which represents the largest distance between

the corresponding automatic and manual segmentation surfaces, is also computed.

All the results are given in Table 2. It is seen that the algorithm performed correctly

and consistently in all the cases.

5.3 Discussion

In the present work, we described a multi-scale shape based framework to auto-

matically extract the hippocampus from MR brain imagery. First, we proposed a

multi-scale representation for the shape using the wavelet transform. In doing so,

we were able to take advantage of the multi-scale property of the wavelet represen-

tation. In particular, in learning the shapes, a small-scale shape variance was not

overwhelmed by large ones. Moreover, in the segmentation step, we combined the
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Table 2: Quantitative analysis for the segmentation results.

Volume Volume Volume ratio1 VOR2 HD3 CDV4

Manual(cm3) Auto(cm3)
Left Mean 3.80 3.93 1.04 0.81 4.89 96%
Left STD 0.64 0.64 0.10 0.048 1.31 4.3%
Right Mean 3.59 3.78 1.05 0.82 4.97 88%
Right STD 0.57 0.62 0.11 0.045 1.27 6.4%

1 Volume ratio is computed as automatic/manual
2 VOR: Volume overlap ratio is computed as the ratio of the volume of intersection
to the volume of union. Optimal value is 1.0
3 HD: Hausdorff distance is defined as the largest distance between the corresponding
automatic and manual segmentation surfaces. Optimal value is 0.0
4 CDV: Correctly delineated volume is defined as the ratio of the volume of intersec-
tion to the manual volume. Optimal value is 100%

atlas-based scheme and the active contour methods to provide an automatic and ro-

bust segmentation algorithm to extract the hippocampus. Finally, the algorithm was

tested on 24 T1 MR brain images and the results were analyzed.

Further work includes investigating the number of training shapes needed for

learning as well as the atlas-based initialization, in order to achieve optimal efficiency

and accuracy. Moreover, in the data driven segmentation step, the local image mean

intensity is used as the criteria in separating the hippocampus with its surrounding

tissue. However, since the training images are available, one promising alternative

would be learning the image information of hippocampus region in the training im-

ages, and use such information to drive the segmentation.

This methodology can now be incorporated into existing treatment planning ap-

proaches. In this manner, the objective of assessing the merits of whole brain irradi-

ation with hippocampal avoidance can be pursued. With time, the neuro-oncologic

community will be able to determine whether control of microscopic disease can be

achieved without significant compromise of neurocognitive function.
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APPENDIX A

PROOF OF THEOREM 1

Proof. The proof consists of two parts:

First we show the average error magnitude decreases monotonically at every scale.

In fact, assume the affine transformation B optimally register point set Q to P, i.e.

B = arg min
B

1

N

∑

q∈Q

‖Cl(Bq) −Bq‖2 (62)

Furthermore, Q is decomposed to U1 and U2, and each of them is registered to P

by starting from B. Then by the optimization process discussed in Section 2.2.1, it is

guaranteed that the resulting two affine transformations B1 and B2 will yield smaller

error:

∑

q∈U1

‖Cl(B1q) −B1q‖2 +
∑

q∈U2

‖Cl(B2q) −B2q‖2

≤
∑

q∈Q

‖Cl(Bq) −Bq‖2 (63)

Second, we claim the average error magnitude approaches zero. In fact, as the

decomposition-registration proceeds, the following limit case can always be reached

in finite time: Q is decomposed into N sub-point-sets, each of which contains one

point. Then there exists N affine (in fact translation is enough) transformations such

that all the errors go to zero.
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